

Baulkham Hills High School

2022

Year 12 Trial Examination

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-35, show relevant mathematical reasoning and/or calculations

Total marks:

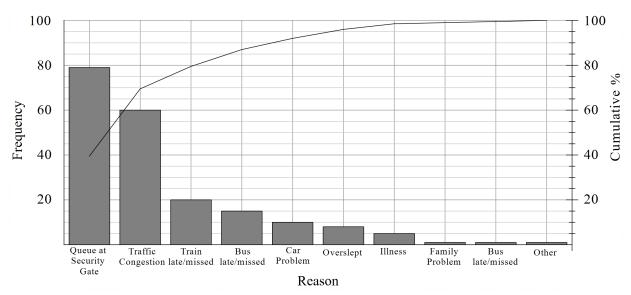
Section I - 10 marks (pages 4-6)

100

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 7-29)

- Attempt Questions 11-35
- Allow about 2 hours and 45 minutes for this section


Section I

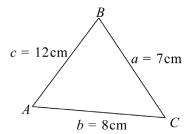
10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 In a survey to find the main causes of lateness in a factory's work force, a random sample of 200 employees who were late for work were asked the reason why. The Pareto chart below shows the results.

What is the minimum number of causes that accounts for the top 80% of the problems?

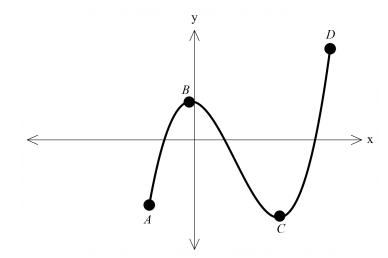
- A. 1
- B. 2
- C. 3
- D. 4
- 2 The weights of a particular bug species are normally distributed with mean 700g and standard deviation 20g. What percentage of bugs have a mass exceeding 740g?
 - A. 2.5%
 - B. 5%
 - C. 16%
 - D. 34%


- 3 If $\cos A = \frac{3}{5}$ and $0^{\circ} < A < 90^{\circ}$, which of the following represents the value of $\cot A$?
 - A. $\frac{3}{5}$
 - B. $\frac{3}{4}$
 - C. $\frac{4}{5}$
 - D. $\frac{4}{3}$
- 4 In $\triangle ABC$, a = 7cm, b = 8cm and c = 12cm. What is the size of angle A to the nearest minute?

B. 34°6'

C. 39°50'

D. 106°4'


- 5 If three positive numbers are inserted between 2 and 1250 such that the resulting sequence is a geometric progression, which of the following is not among the numbers inserted?
 - A. 10
 - B. 25
 - C. 50
 - D. 250
- **6** The table below shows a discrete probability distribution for a random variable X.

x	1	2	3	4
P(X=x)	2 <i>b</i>	b	4 <i>b</i>	5 <i>b</i>

What is the expected value of X?

- A. $\frac{1}{12}$
- B. 1
- C. 3
- D. 36

- 7 Which of the following is the domain for $y = \frac{1}{x-4}$?
 - A. $(-\infty,4)\cup(4,\infty)$
 - B. (-4,4)
 - C. $(-\infty,4] \cup [4,\infty)$
 - D. $(-\infty, \infty)$
- **8** Given the graph below, which of the following points on this curve shows the local maximum?

- A. A
- B. B
- C. C
- D. D
- The function $y = \log_{10} x$ is transformed to $y = 3\log_{10}[2(x+5)] 4$ using only four steps. Which of the following is not one of the correct steps to transform $y = \log_{10} x$ to the new graph?
 - A. Translate down by 4 units
 - B. Translate to the left by 5 units
 - C. Vertical dilation by a factor of 3
 - D. Horizontal dilation by a factor of 2
- 10 Use the z-score table provided at the back of the paper to answer this question. A random variable X is normally distributed, $P(X \le 22) = 61.79\%$ and $P(X \le 17) = 35.94\%$. Which of the following is the mean?
 - A. 1.89
 - B. 7.58
 - C. 18.74
 - D. 19.73

End of Section I

Section II

90 marks

Attempt Questions 11-35

Allow about 2 hours and 45 minutes for this section

Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response. Your responses should include relevant mathematical reasoning.

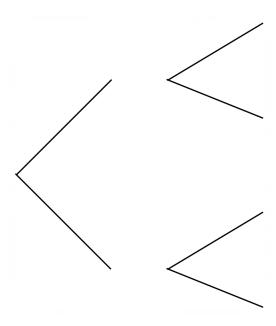
Question 11 (2 marks)	
Simplify $2 + \frac{t^2}{t+1} - \left(1 + \frac{1}{t+1}\right)$.	2
Question 12 (1 mark)	
Prove $\tan \theta (1 - \cot^2 \theta) + \cot \theta (1 - \tan^2 \theta) = 0$.	1

Question 13 (3 marks)

The table below shows the future value of an annuity with a contribution of \$1.

Table of future value interest factors						
Period		Intere	st rate per p	period		
Perioa	1%	2%	3%	4%	5%	
3	3.0301	3.0604	3.0909	3.1216	3.1525	
4	4.0604	4.1216	4.1836	4.2465	4.3101	
5	5.1010	5.2040	5.3091	5.4163	5.5256	
6	6.1520	6.3081	6.4684	6.6330	6.8019	

a)	Angela is saving for a holiday by contributing \$700 into an annuity that pays interest at the rate of 8% p.a., compounded half-yearly. Use the table above to find how much she will have in 3 years' time.	1
b)	Grace is saving for the same trip and needs \$6000 in total. How much more than Angela does she need to contribute each half year, using the same annuity, if she wishes to have enough money in 3 years' time?	2


Question 14 (2 marks)	
Find the second derivative of $y = \ln(4x - 1)$.	2
Question 15 (2 marks)	
Differentiate $y = x^2 a^6 x$	2
Differentiate $y = x^2 e^{6x}$.	Z
Quarties 16 (2 montes)	
Question 16 (2 marks)	
$-\cos x + \sin 5x$	_
Differentiate $y = \frac{\sin 5x}{x^4}$.	2
N .	

Question 17 (4 marks)

In a raffle 50 tickets are sold, and there is one first prize and one second prize. Jody buys 15 tickets in the raffle. The first prize is drawn then the second prize.

a) Complete the probability tree diagram below, showing all outcomes.

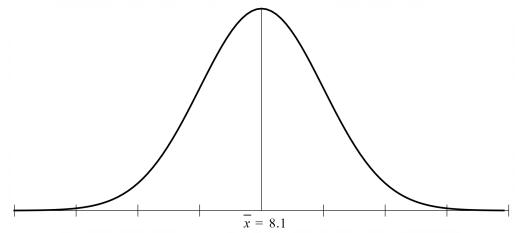
b)	What is the probability that Jody wins the first prize, but not the second prize?	J
c)	Find the probability that Jody wins at least one prize?]

Question 18 (2 marks)

Determine the angle of inclination θ of the line x + y + 1 = 0. 2 **Question 19** (3 marks) Differentiate $f(x) = 5x^2 - 3x$ from first principles. 3

Question 20 (2 marks)

Find the area bounded by the curve $y = 3e^{2x}$, the x-axis and the lines $x = 1$ and $x = 5$.	2
Leave your answer correct to 1 decimal place.	
Question 21 (2 marks)	
Solve the equation $\log_5(x+1) - \log_5 x = 2$.	2
Question 22 (3 marks)	
Evaluate the definite integral $\int_{\frac{\pi}{4}}^{\pi} \tan^2 x dx$, leaving your answer in exact form.	3


Question 24 (3 marks)	Question	23 (2 marks)					
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.	Evaluate \int	$\frac{3}{5}\frac{2dx}{5x-2}$ correct t	o 2 decimal pla	ces.			2
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.							
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.							
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.							
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.	•••••						•••••
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.						•••••	
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.							
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.	•••••						•••••
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.	•••••						•••••
Fill in the following table and use the trapezoidal rule with 4 function values to approximate $\int_4^7 2^x dx$.							
approximate $\int_4^7 2^x dx$. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question	24 (3 marks)					
			and use the tra	pezoidal rule w	vith 4 function va	alues to	3
у 16		x	4	5	6	7	
		у	16				
	•••••	•••••	•••••	•••••	••••••	•••••	••••••

Question 25 (3 marks)

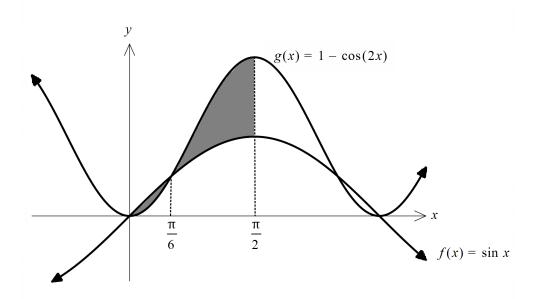
Find the equation of the normal to the curve $y = x \cos x$ at the point where $x = \frac{\pi}{2}$.	3

Question 26 (4 marks)

The weights of metal drums are normally distributed with a mean of 8.1kg and a standard deviation of 2kg.

a)	What weight would have a z-score of -2 ?	1
••••		
••••		
b)	Use the z-score table provided at the back of the paper to answer this question. Find $P(8.4 \le X \le 11)$, where X is a random variable, representing the weight of the drums?	3
••••		
••••		

Question 27 (8 marks)


a)	Find the stationary point(s) and determine their nature.	3
b)	Find the point(s) of inflection.	2

Question 28 (3 marks)	
Solve $4^x - 2^{x+2} = 32$.	3

Question 29 (3 marks)

The diagram below shows two curves $f(x) = \sin x$ and $g(x) = 1 - \cos(2x)$.

Find the area of the shaded region correct to 2 decimal places.	3

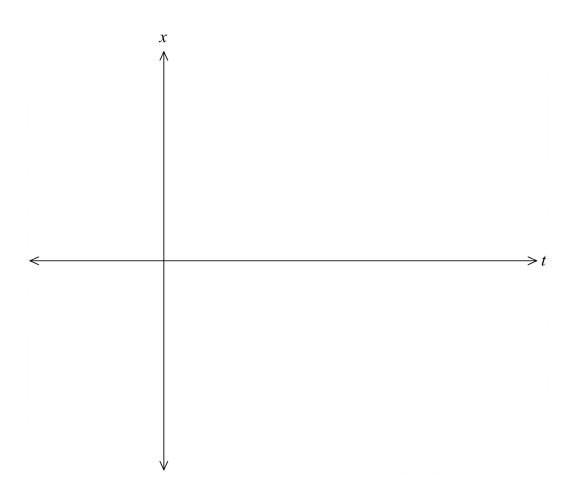
Question 30 (4 marks)

A continuous random variable, X, has the following probability density function.

$$f(x) = \begin{cases} 3^x & \text{for } 0 \le x \le k \\ 0 & \text{for all other values of } x \end{cases}$$

a)	Find the value of k correct to 2 decimal places.	2
b)	Evaluate the 8 th decile correct to 2 decimal places.	2

Question 31 (3 r	marks)
------------------	--------


Given $f''(t) = t + \sqrt{t}$, find the equation of the curve $f(t)$, given $f(1) = 1$ and $f'(1) = 2$.	3

Qu	nestion 32 (12 marks)	
Aı	particle moves in a straight line so that its distance x metres from the origin is given by	
<i>x</i> =	$=4\cos\left(t-\frac{\pi}{3}\right)$ for $0 \le t \le \pi$.	
a)	Where is the particle initially?	1
b)	When does the particle first come to rest?	2
c)	When does the particle first pass through the origin?]
d)	Find when the rate of change of velocity is zero.	2

Question 32 continues onto the next page

e) Hence or otherwise, draw a neat sketch of $x = 4\cos\left(t - \frac{\pi}{3}\right)$ for $0 \le t \le \pi$, showing its main features.

Calculate the total distance travelled between $t = \frac{\pi}{6}$ and $t = \frac{6\pi}{7}$.

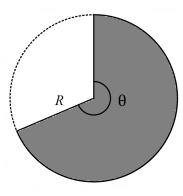
Question 33 (3 marks)

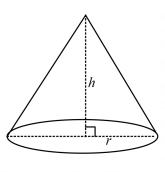
A radioactive substance is decaying such that its mass, m grams, at a time t years after initial observation is given by

 $m = 60e^{kt}$, where k is a constant.

After 100 years, the mass of radioactive substance is 42 grams.

a)	Find the value of k , leaving your answer in exact form.	1
1 \		_
b)	Find the value of t when $m = 30$.	2


Question 34 (5 marks)


\$2000 is invested into a credit union account at the beginning of each year and interest is paid at the end of each year, at a rate of 6.5% per annum, on the balance in the account at that time.

a)	Show that the value of the investment at the end of the 3 years is \$6814.35.	2
b)	At the end of how many years, before the next \$2000 is invested, would the accumulated amount in the account first exceed \$100,000?	3

Question 35 (9 marks)

From a circular disc of metal whose area is 100m^2 , a sector is cut out and used to make a right cone. The radius of the disc is R metres. The perpendicular height of the cone with radius r metres, is h metres.

1

- a) Show that the height of the cone is given by $h = \sqrt{\frac{100}{\pi} r^2}$.
- b) Show that the volume of the cone is given by $V = \frac{r^2 \sqrt{100\pi \pi^2 r^2}}{3}$.

c)	Show that the volume is maximised when $r = \sqrt{\frac{200}{3\pi}}$.

Question 35 continues onto the next page

Question 35 continues onto the next page

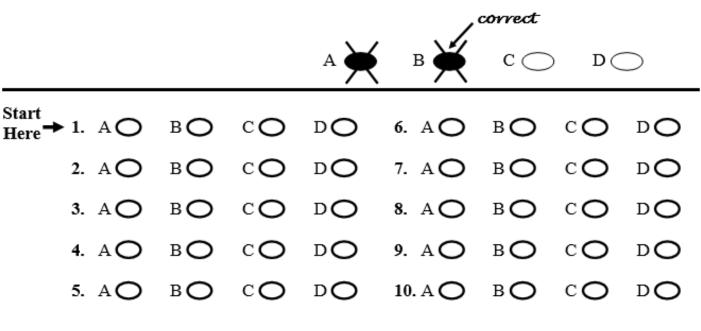
d)	Given that the area of the sector used to make the cone is $A = \pi Rr$, show that the	2
	angle in this sector θ , which gives a maximum volume for the cone, is $\frac{2\pi\sqrt{6}}{3}$ radians.	

END OF PAPER

BAULKHAM HILLS HIGH SCHOOL YEAR 12 TRIAL EXAMINATION 2022 MATHEMATICS ADVANCED

NESA#: _	
Teacher:	

Mathematics Section I – Multiple Choice


Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A B C D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \longrightarrow B \nearrow C \bigcirc D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

Baulkham Hills High School Task 4 Trials Examination 2022

Marking Guideline- Yr 12 Mathematics Advanced

Section I (10 marks)

Award 1 marks to each correct answer.

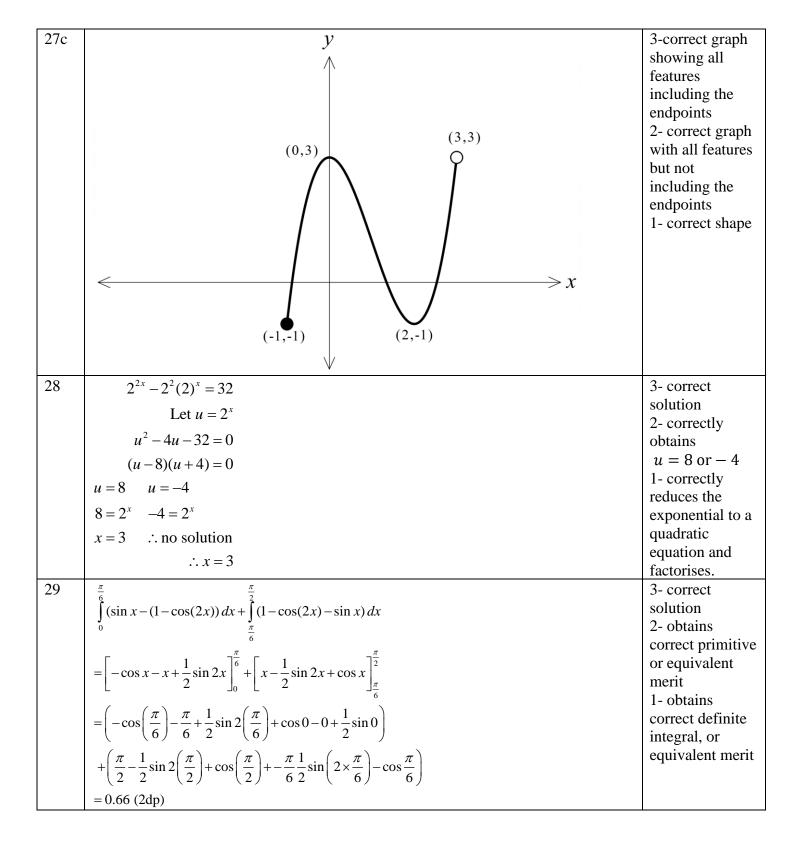
Answers: 1.D 2.A 3.B 4.B 5.B 6.C 7.A 8.B 9.D 10.D

Question	Suggested solutions	Answer
1	Line up 80% on the cumulative percentage to the ogive. This will	D
2	show that 4 of the main causes takes up 80% of the problem.	Α
2	740g has a z-score of 2	A
	P(z > 2) = 50% - 47.5%	
	= 2.5%	
3	$3 \qquad \qquad 5$ $\cos A = \frac{3}{5}$ $\tan A = \frac{4}{3}$ $\therefore \cot A = \frac{3}{4}$	В
4	$\cos A = \frac{8^2 + 12^2 - 7^2}{2(12)(8)}$ = 0.828125 $B = 34^{\circ}6' \text{(nearest minute)}$ 12	В
5	2,b,c,d,1250 The first term is 2.	В
	The last term $1250 = 2 \times r^4$	
	r=5	
	The GP is 2,10,50,250,1250	

6 $\sum P(X = x) = 1$ $\therefore 2b + b + 4b + 5b = 1$ $\therefore b = \frac{1}{12}$ The expected mean of X: $2b + 2b + 12b + 20b = 36b$ $= 36 \times \frac{1}{12}$ $= 3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point D is the global maximum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$			
$\therefore 2b+b+4b+5b=1$ $\therefore b=\frac{1}{12}$ The expected mean of X: $2b+2b+12b+20b=36b$ $=36 \times \frac{1}{12}$ $=3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point D is the global maximum $\therefore \text{ point B is the local maximum}$ 9 To transform $y=\log_{10}x$ to $y=3\log_{10}(2(x+5))-4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z=\frac{\overline{x}-x}{\sigma}$ 0.3 = $\frac{22-\overline{x}}{\sigma}$ -0.36 = $\frac{17-\overline{x}}{\sigma}$ Solving simultaneously: 0.3 σ = 22 - \overline{x} -0.36 = 17 - \overline{x}	6	$\sum P(X=x) = 1$	С
The expected mean of X : $2b+2b+12b+20b=36b$ $=36 \times \frac{1}{12}$ $=3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		2b+b+4b+5b=1	
The expected mean of X : $2b+2b+12b+20b=36b$ $=36 \times \frac{1}{12}$ $=3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$., 1	
$2b+2b+12b+20b=36b$ $=36 \times \frac{1}{12}$ $=3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point B is the local maximum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		$\therefore b = \frac{12}{12}$	
$= 36 \times \frac{1}{12}$ $= 3$ 7 Looking at the denominator, x cannot be equal to 4. Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point D is the global maximum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		The expected mean of X:	
$= 3$ Looking at the denominator, x cannot be equal to 4. $Domain: (-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point B is the local maximum $\therefore \text{ point B is the local maximum}$ 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		2b + 2b + 12b + 20b = 36b	
To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z -score of 0.3 A probability of 35.94% has a z -score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		$=36\times\frac{1}{12}$	
Domain: $(-\infty, 4) \cup (4, \infty)$ 8 point A is the global minimum point C is the local minimum point D is the global maximum \therefore point B is the local maximum 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$			
8 point A is the global minimum point C is the local minimum point D is the global maximum \therefore point B is the local maximum 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ 0.3 = $\frac{22 - \overline{x}}{\sigma}$ -0.36 = $\frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: 0.3 σ = 22 - \overline{x} -0.36 = 17 - \overline{x}	7	_	A
point C is the local minimum point D is the global maximum ∴ point B is the local maximum To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		· · · · · · · · · · · · · · · · · · ·	
point D is the global maximum point B is the local maximum To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$	8	point A is the global minimum	В
∴ point B is the local maximum 9 To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		point C is the local minimum	
To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is 1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		point D is the global maximum	
1. Translate to the left by 5 units 2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		∴ point B is the local maximum	
2. Vertical dilation by a factor of 3 3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$	9	To transform $y = \log_{10} x$ to $y = 3\log_{10}(2(x+5)) - 4$, the order is	D
3. Horizontal dilation by a factor of $\frac{1}{2}$ 4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		1. Translate to the left by 5 units	
4. Translate down by 4 units. 10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		2. Vertical dilation by a factor of 3	
10 A probability of 61.79% has a z-score of 0.3 A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		3. Horizontal dilation by a factor of $\frac{1}{2}$	
A probability of 35.94% has a z-score of -0.36 $z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		4. Translate down by 4 units.	
$z = \frac{\overline{x} - x}{\sigma}$ $0.3 = \frac{22 - \overline{x}}{\sigma} -0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$	10	A probability of 61.79% has a z-score of 0.3	D
$0.3 = \frac{22 - \overline{x}}{\sigma} - 0.36 = \frac{17 - \overline{x}}{\sigma}$ Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		A probability of 35.94% has a z-score of -0.36	
Solving simultaneously: $0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$			
$0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		$0.3 = \frac{22 - \overline{x}}{\sigma}$ $-0.36 = \frac{17 - \overline{x}}{\sigma}$	
$0.3\sigma = 22 - \overline{x}$ $-0.36 = 17 - \overline{x}$		Solving simultaneously:	
$-0.36 = 17 - \overline{x}$			
$\therefore \sigma = 7.58$		$\sigma = 7.58$	
$\therefore \overline{x} = 19.73$			

Section II (90 marks)

In all questions, award full marks for correct answers with necessary working.


Use the suggested solutions in conjunction with the marking criteria.

Q	Suggested Solutions	Marking criteria
11	$2 + \frac{t^2}{t+1} - \left(1 + \frac{1}{t+1}\right) = \frac{2t+2+t^2-t-1-1}{t+1}$ $= \frac{t^2+t}{t+1}$ $= \frac{t(t+1)}{t+1}$ $= t$	2- correction solution 1- correctly making the denominator the same
12	LHS = $\tan \theta (1 - \cot^2 \theta) + \cot \theta (1 - \tan^2 \theta)$ = $\frac{\tan \theta (\tan^2 \theta - 1)}{\tan^2 \theta} + \frac{1}{\tan \theta} (1 - \tan^2 \theta)$ = $\frac{\tan^2 \theta - 1 + 1 - \tan^2 \theta}{\tan \theta}$ = 0 = RHS	1- correct solution
13a	Period = 3×2 = 6months Rate = $8\% \div 2$ = 4% Future value = 700×6.6330 = $$4643.10$	1- correct solution
13b	Future value = 6000 $6000 = x \times 6.6330$ x = \$904.57 Angela needs = $$904.57 - 700 = \$204.57	2- correct solution 1- Obtaining $x = 904.57
14	$y = \ln(4x - 1)$ $\frac{dy}{dx} = \frac{4}{4x - 1}$ $\frac{d^2y}{dx^2} = \frac{-16}{(4x - 1)^2}$	2- correct solution 1- correctly obtaining $\frac{dy}{dx}$
15	$y = x^{2}e^{6x}$ $y' = uv' + u'v$ $y' = 2xe^{6x} + 6x^{2}e^{6x}$ $u = x^{2} v = e^{6x}$ $u' = 2x v' = 6e^{6x}$	2- correct solution 1- attempts to use the product rule

16	$\sin 5x$	2- correct
	$y = \frac{\sin^2 x}{x^4}$	solution
	$u = \sin 5x \qquad v = x^4$	1- attempts to
	$y' = \frac{u'v - v'u}{v^2}$ $u = \sin 5x \qquad v = x^4$ $u' = 5\cos(5x) v' = 4x^3$	use the quotient
		rule
	$y' = \frac{5x^4 \cos(5x) - 4x^3 \sin(5x)}{x^8}$	
17a	PP	2- Correct
2,44		diagram
	$\frac{14}{49}$ P	1- some
	P	significant
		progress
	$\frac{15}{50} \qquad \qquad \frac{35}{49} \qquad N \qquad PN$	Note: they do not need to list
	$\frac{1}{49}$	the outcomes on
		the right for full
		marks
	$\frac{15}{49}$ P NP	
	$\frac{35}{50}$	
	\sim \sim \sim \sim \sim	
	$\frac{34}{49}$ N NN	
17b	B 1 1 111 (AVD) 15 35	1- correct
	Probability(NP) = $\frac{15}{50} \times \frac{35}{49}$	solution
	$=\frac{3}{14}$	
17c	Probability(at least 1 prize) = $1 - (\text{no prize})$	1- correct
	$=1-\left(\frac{35}{50}\times\frac{34}{49}\right)$	solution
	(50^49)	
	$=\frac{18}{35}$	
18	y = -x - 1	2- correct
	m=-1	solution 1- obtaining
	$\theta = \tan^{-1}(-1)$	m = -1
	$\theta = -45^{\circ}$	""
	$\therefore \theta = 135^{\circ}$	
19	$f(x)' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	3- correct
	$\int_{h\to 0}^{\infty} \frac{f(x) - \lim_{h\to 0}^{\infty}}{h}$	solution
	$= \lim_{h \to 0} \frac{5(x+h)^2 - 3(x+h) - (5x^2 - 3x)}{h}$	2- correctly expands and
	$= \lim_{h \to 0} \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	simplifies
	$5x^2 + 10xh + 5h^2 - 3x - 3h - 5x^2 + 3x$	1- correctly
	$= \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 3x - 3h - 5x^2 + 3x}{h}$	substitutes
	$10xh + 5h^2 - 3h$	f(x+h)
	$=\lim_{h\to 0}\frac{10xh+5h^2-3h}{h}$	
	h(10x+5h-3)	
	$= \lim_{h \to 0} \frac{h(10x + 5h - 3)}{h}$	
	$=\lim_{h\to 0} 10x + 5h - 3$	
	= 10x - 3	
	·	ı

20	$\int_{1}^{5} 3e^{2x} dx = \frac{3}{2} \left[e^{2x} \right]$	75				2- correct		
	$\int_1^1 \int_1^{\infty} dx = 2 \int_1^{\infty}$	solution						
	3 [10 2]	1- correctly integrates $3e^{2x}$						
	= 33028.6 (1 decin)	mal place)				Note: Do not		
						deduct rounding		
21	$\log_5(x+1) - \log_5$	x = 2				2- correct		
	(x+1)) .				solution		
	$\log_5\left(\frac{x+1}{x}\right)$	=2				1- use the log		
						law to solve the		
	5	$x^{2} = \frac{x+1}{x}$				equation, or		
		$\boldsymbol{\mathcal{X}}$				equivalent merit.		
	25x	x = 1						
		1						
		$x = \frac{1}{24}$						
22						3- correct		
	$\int_{\frac{\pi}{4}}^{\pi} \tan^2 x dx = \int_{\frac{\pi}{4}}^{\pi} (x)^{-\frac{\pi}{4}} dx$	$\sec^2 x - 1 dx$				solution		
	1 4					2- Finds the		
	=[tan	$[x-x]_{\frac{\pi}{4}}^{\pi}$				anti-derivative		
		4				of $\sec^2 x$, or		
	= tan	$\pi - \pi - \tan \frac{\pi}{4} + \frac{\pi}{4}$	$\frac{\pi}{}$			equivalent merit		
		-	4			1- recognise the		
	32	7 1				identity for		
	=4	1				$\tan^2 x$		
23	$= -\frac{3x}{4}$ $\int_{1}^{3} \frac{dx}{5x - 2} dx = \frac{2}{5} \int_{1}^{3} \frac{dx}{5x - 2} dx$	3 5				2- correct		
23	$\int_{1}^{3} \frac{dx}{5} dx = \frac{2}{5} \int_{1}^{3}$	$\frac{3}{5}$ dx				solution		
	$\int_{0}^{1} 3x - 2$	5x-2				1- Writes an		
	$=\frac{2}{1}$	$[(5x-2)]_1^3$				anti-derivative		
	5	/ /1				involving the		
	_ 2 _ 1	n(5(3)-2)-ln(3)	5(1) 2))]			log function, or		
	$=\frac{1}{5}$	II(3(3)-2)-III(3(3)-2)	J(1)-2))]			equivalent merit		
	2					Note: Do not		
	$=\frac{2}{5}(1$	n 13 – ln 3)				deduct for		
	3					incorrect		
	= 0.59	9 (2dp)				rounding		
24		,	_			3- correct		
	x	4	5	6	7	solution with the		
		correct table						
	y	2- correct table						
	y 16 32 64 128							
	$\int_{0}^{7} 2^{x} dx \approx \frac{1}{2} (16 + 128 + 2(32 + 64))$							
	$\int_{4}^{2} ax \approx \frac{-(10+128+2(32+04))}{2}$							
	$\approx 168(2dp)$							
	≈ 100(2up)							
	$\int_{4}^{7} 2^{x} dx \approx \frac{1}{2} (16 + 128 + 2(32 + 64))$ $\approx 168 (2 dp)$					progress of using the trapezoidal rule 1- correct table or equivalent		

25	$y = x \cos x$	3- correct
	$y' = \cos x - x \sin x$	solution
	π	2- correctly
	When $x = \frac{\pi}{2}$, $y = 0$	obtains the
	π π . π	normal gradient 1- correctly
	$m_1 = \cos\frac{\pi}{2} - \frac{\pi}{2}\sin\frac{\pi}{2}$	differentiates
	π	$y = x \cos x$
	$m_1 = -\frac{\pi}{2}$	
	$m_2 = \frac{2}{\pi}$	
	$m_2 = \frac{-}{\pi}$	
	$y - y_1 = m_2(x - x_1)$	
	$y = 0 - 2(x - \pi)$	
	$y - 0 = \frac{2}{\pi} \left(x - \frac{\pi}{2} \right)$	
	2x	
	$y = \frac{2x}{\pi} - 1$	
26a	_	1- correct
	$z = \frac{x - x}{\sigma}$	solution
	$-2 = \frac{x - 8.1}{2}$	
	x = 4.1 kg	
26b	$z = \frac{x - \overline{x}}{\sigma}$	3- correct
		solution 2- finds the
	$z = \frac{8.4 - 8.1}{2}$ $x = \frac{11 - 8.1}{2}$	probabilities for
		both z scores but
	z = 0.15 $z = 1.45$	does not subtract
	$P(0.15 \le z \le 1.45) = P(z \le 1.45) - P(z \le 0.15)$	correctly 1- find the z
	=0.9265-0.5596	score for both
	= 0.3669	scores
27a	$f(x) = x^3 - 3x^2 + 3$	3- correct
	$f'(x) = 3x^2 - 6x$	solution 2- correctly
	f''(x) = 6x - 6	obtains $x = 0, 2$
	When $f'(x) = 0$	1- some
	$0 = 3x^2 - 6x$	progress
	0 = 3x(x-2)	
	$\begin{vmatrix} 0 - 3x(x - 2) \\ x = 0, 2 \end{vmatrix}$	
	When $x = 0$, $y = 3$ When $x = 2$, $y = -1$	
	f''(0) = -6 $f''(2) = 6$	
271	<0 ∴ maximum turning point >0 ∴ minimum turning point	2 find- 11-
27b	When $f''(x) = 0$	2- finds the coordinate and
	6x - 6 = 0	checks the
	x = 1	concavity
		1- finds (1,1)
	Check concavity changes	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	\therefore (1,1) is a point of inflection	
	···(-,-/, # P oint of mineron	

30a	\mathbf{f}^k or	2- correct
304	$\int_0^{\kappa} 3^{\kappa} = 1$	solution
	$\begin{bmatrix} 3^x \end{bmatrix}^k$	1- Writes an
	$\left[\frac{3^x}{\ln 3}\right]_0^k = 1$	equation
		involving a
	$\frac{3^k}{\ln 3} - \frac{3^0}{\ln 3} = 1$	definite integral
		set equal to 1, or equivalent
	$3^k = \ln 3 + 1$	merit
	$k = \log_3(\ln(3) + 1))$	
	=0.67(2dp)	
30b	F(x) = 0.8	2- correct
	$F(x) = \int 3^x$	solution
	2x	1- correctly identifies
	$=\frac{3^x}{\ln 3}+C$	
		$0.8 = \frac{3^x - 1}{\ln 3}$
	When $x = 0, F(0) = 0$	
	$0 = \frac{3^0}{\ln 3} + C$	
	$C = -\frac{1}{\ln 3}$	
	ln3	
	$F(x) = \begin{cases} 0, & \text{for } x \le 0\\ \frac{3^x - 1}{\ln 3}, & \text{for } 0 \le x \le 0.67\\ 1, & \text{for } x > 0.67 \end{cases}$	
	$F(x) = \begin{cases} \frac{3^x - 1}{x^2}, & \text{for } 0 \le x \le 0.67 \end{cases}$	
	$\ln 3$	
	(1, for x > 0.67)	
	$\frac{3^x - 1}{\ln 3} = 0.8$	
	$\frac{1}{\ln 3} = 0.8$	
	$3^x = 0.8\ln(3) + 1$	
	$x = \log 3(0.8\ln(3) + 1)$	
	= 0.57 (2dp)	
31	1 -	3- correct
	$f''(t) = t + t^{\frac{1}{2}}$	solution
	$f'(t) = \frac{t^2}{2} + \frac{2}{3}t^{\frac{2}{3}} + C$, where C is some constant	2- obtains
	2 3	correct primitive of $f'(x)$ or
	$2 = \frac{1}{2} + \frac{2}{3} + C$	equivalent merit
	2 3	1- obtains
	$\therefore C = \frac{5}{6}$	correct primitive
		of $f''(x)$ or
	$f'(t) = \frac{t^2}{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{5}{6}$	equivalent merit
	2 3 6	
	$f(t) = \frac{t^3}{1 + t^2} + \frac{4}{1 + t^2} + \frac{5}{1 + t^2} + 5$	
	$f(t) = \frac{t^3}{6} + \frac{4}{15}t^{\frac{5}{2}} + \frac{5}{6}t + D$, where D is some constant	
	$1 = \frac{1}{6} + \frac{4}{15} + \frac{5}{6} + D$	
	$\therefore D = -\frac{4}{15}$	
	15	
	$f(t) = \frac{t^3}{6} + \frac{4}{15}t^{\frac{5}{2}} + \frac{5}{6}t - \frac{4}{15}$	

		T .
32a	When $t = 0$, $x = 4\cos\left(-\frac{\pi}{3}\right)$	1- correct
	3)	solution
	$\therefore x = 2$	
32b	Particle at rest when $v = 0$	2- correct
	$A = i\pi \left(\frac{\pi}{2} \right)$	solution
	$v = -4\sin\left(t - \frac{\pi}{3}\right)$	1- differentiates
		correctly to find v
	$0 = -4\sin\left(t - \frac{\pi}{3}\right)$	V
	$0 = \sin\left(t - \frac{\pi}{3}\right)$	
	$t - \frac{\pi}{3} = 0$	
	$t = \frac{\pi}{3}$	
	3	
	\therefore The particle first comes to rest is when $t = \frac{\pi}{3}$	
32c	3	1
320	$x = 4\cos\left(t - \frac{\pi}{3}\right)$ $0 = 4\cos\left(t - \frac{\pi}{3}\right)$	1- correct solution
		Solution
	$0 = 4\cos\left(t - \frac{\pi}{a}\right)$	
	$t - \frac{\pi}{3} = \frac{\pi}{2}$	
	$\therefore t = \frac{5\pi}{6}$	
20.1		2
32d	$a = -4\cos\left(t - \frac{\pi}{3}\right)$	2- correct solution
		1- differentiates
	$0 = -4\cos\left(t - \frac{\pi}{2}\right)$	correctly to find
	$\begin{pmatrix} 0 - 4\cos(t - 3) \end{pmatrix}$	a and substitutes
	$0 = -4\cos\left(t - \frac{\pi}{3}\right)$ $0 = \cos\left(t - \frac{\pi}{3}\right)$	a = 0
	$0 = \cos\left(i - \frac{\pi}{3}\right)$	
	$t - \frac{\pi}{3} = \frac{\pi}{2}$	
	$\therefore t = \frac{5\pi}{6}$	
32e	t .	3- correct graph
	$\left(\frac{\pi}{3},4\right)$	showing all
	$\left(\frac{3}{3}, \frac{4}{4}\right)$	features
		2- correct graph
	(0,2)	but missing some features
		1- incorrect
	$\left\{\begin{array}{c} \frac{5\pi}{6}, 0 \end{array}\right\} \Rightarrow x$	graph showing
		all features
	(π,-2)	
	\bigvee	

32f	When $t = \frac{\pi}{6}$, $x = 4\cos\left(-\frac{\pi}{6}\right)$	3- correct solution
	When $t = \frac{6\pi}{7}$, $x = 4\cos\left(\frac{11\pi}{21}\right)$	2- finding either $f\left(\frac{\pi}{6}\right)$ or $f\left(\frac{6\pi}{7}\right)$
	Total distance = $\left(4 - 4\cos\left(-\frac{\pi}{6}\right)\right) + 4 + \left 4\cos\left(\frac{11\pi}{21}\right)\right $	with + 4 1- realising to separate the
	=4.835(3dp)	distances
33a	$m = 60e^{kt}$	1- correct
	$42 = 60e^{100k}$	solution
	$0.7 = e^{100k}$	
	$k = \frac{1}{100} \ln 0.7$	
33b	$m = 60e^{\frac{t}{100}\ln 0.7}$	2- correct
		solution 1- correctly
	$30 = 60e^{\frac{t}{100}\ln 0.7}$	obtaining
	$0.5 = e^{\frac{t}{100}\ln 0.7}$	$\ln 0.5 =$
		$\frac{t}{100} \ln 0.7 \text{ or}$
	$\ln 0.5 = \frac{t}{100} \ln 0.7$	equivalent merit
	$t = 100 \times \frac{\ln 0.5}{\ln 0.7}$	
34a	t = 194.34(2dp) Value of investment at the end of 3 years	2- correct
34a	$= 2000(1.065)^3 + 2000(1.065)^2 + 2000(1.065)$	solution
	= \$6814.35	1- correctly
	φοστι.σε	obtaining the series
		Series
34b	Amount accumulated at end of n^{th} year	3- correct
	$= 2000 \times 1.065^{n} + 2000 \times 1.065^{n-1} + \dots + 2000 \times 1.065$	solution 2- identifying
	$= 2000(1.065 + 1.065^2 + + 1.065^n)$	the sum of a GP
	$=2000\times\frac{1.605(1.065^n-1)}{1.065-1}$	correctly 1- correctly
	1.065 – 1	finding the
	$\frac{2130}{0.065}(1.065^n - 1) > 100000$	series that shows
		the amount
	$\frac{2130}{0.065}(1.065^n - 1) > 100000$	accumulated at the end of the
	$1.065^{n} > 4.0516$	nth year.
	$n > \frac{\log 4.0516}{\log 1.065}$	
i		1
	n > 22.2	

	-	
35a	Area: $\pi R^2 = 100$	2- Correct
	$_{\rm p^2}$ 100	solution
	$\therefore R^2 = \frac{100}{\pi}$	1- correctly substituting
	Using pythagoras theorem	
	$R^2 = h^2 + r^2$	$R = \sqrt{\frac{100}{\pi}}$
	$h = \sqrt{R^2 - r^2}$	
	$h = \sqrt{R} - r$ $h = \sqrt{\frac{100}{\pi} - r^2}$	
35b	$V = \frac{1}{3}\pi r^2 h$	1- correct solution
	$= \frac{1}{3}\pi r^2 \sqrt{\frac{100}{\pi} - r^2}$	
	$=\frac{1}{3}\pi r^2 \sqrt{\frac{100-\pi r^2}{\pi}}$	
	$= \frac{1}{3}r^2 \sqrt{\pi^2 \times \frac{100 - \pi r^2}{\pi}}$ $= \frac{r^2 \sqrt{100\pi - \pi^2 r^2}}{3}$	
	$=\frac{r^2\sqrt{100\pi-\pi^2r^2}}{3}$	
35c		4- correct
	$\sqrt{r^4(100 - r^2 + r^2)}$	solution
	$v = \sqrt{\frac{r(100\pi - \pi r)}{2}}$	3- correctly
	V 9	obtained $r =$
	$v = \sqrt{\frac{r^4 (100\pi - \pi^2 r^2)}{9}}$ $= \left(\frac{100\pi r^4}{9} - \frac{\pi^2 r^6}{9}\right)^{\frac{1}{2}}$	$\sqrt{\frac{200}{3\pi}}$ but did not
	$=\left(\frac{}{9} - \frac{}{9} \right)$	$\sqrt{3\pi}$ check it was a
		maximum
	$v' = \frac{1}{2} \left(\frac{100\pi r^4}{9} - \frac{\pi^2 r^6}{9} \right)^{-\frac{1}{2}} \times \left(\frac{400\pi r^3}{9} - \frac{6\pi^2 r^5}{9} \right)$	2- some significant
		progress
	$=\frac{\left(\frac{400\pi r^3}{9} - \frac{6\pi^2 r}{9}\right)}{2\sqrt{\frac{100\pi r^4}{9} - \frac{\pi^2 r^6}{9}}}$	towards
	$=\frac{(999)}{}$	obtaining <i>r</i>
	$\frac{100\pi r^4}{r^4} - \frac{\pi^2 r^6}{r^6}$	1- correctly
	$2\sqrt{9}$	finds v' in any
	$v' = 0 \text{ when } \frac{400\pi r^3}{9} - \frac{6\pi^2 r^5}{9} = 0$	form
	$\pi r^3 (400 - 6\pi r^2) = 0$	
	$400 - 6\pi r^2 = 0$	
	$r = 0, r = \sqrt{\frac{200}{3\pi}}$	
	Test for max when $r = \sqrt{\frac{200}{3\pi}}$	
	$v' = \frac{\left(\frac{400\pi r^3}{9} - \frac{6\pi^2 r}{9}\right)}{2\sqrt{\frac{100\pi r^4}{9} - \frac{\pi^2 r^6}{9}}}$	
	$2\sqrt{\frac{100\pi r^4}{9} - \frac{\pi^2 r^6}{9}}$	

	r	4	$\sqrt{\frac{200}{3\pi}}$	5	
	$\frac{dv}{dr}$	16.49	0	-22.71	
		positive	0	negative	
35d	$A = \pi R r$ area of a sector $A = \frac{\theta}{2}$ $\therefore \frac{\theta}{2} \times R^2 = \pi R r$ $\frac{\theta}{2} \sqrt{\frac{100}{\pi}} = \pi r$ $\theta = \frac{2\pi r}{\sqrt{\frac{100}{\pi}}}$ $\theta = \frac{2\pi \sqrt{\frac{200}{3\pi}}}{\sqrt{\frac{100}{\pi}}}$		0	negative	2- correct solution 1-using simultaneous equations, substituting all the information provided from the previous parts
	$\sqrt{\frac{\pi}{\pi}}$ $= 2\pi \sqrt{\frac{200}{3\pi}} \times \frac{\pi}{100}$ $= 2\pi \times \sqrt{\frac{2}{3}}$ $= 2\pi \times \sqrt{\frac{2}{3} \times \frac{3}{3}}$ $= 2\pi \times \sqrt{\frac{6}{9}}$ $\therefore \theta = \frac{2\pi\sqrt{6}}{3} \text{ radians}$				